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Abstract 
 
Environmental stress adversely affects living systems within medical as well as 
industrial context, causing either diseases or resulting in e.g. underperforming 
production processes. In particular oxidative stress in industrial biotechnology context, 
manifested as the imbalance in generation of reactive oxygen species and antioxidant 
capacity causes yield losses both in growth and production in baker’s yeast. Oxidative 
stress response studies for Saccharomyces cerevisiae at transcriptome level are using 
either direct induction methods such as treatment with peroxides or indirect induction 
methods such as treatment with drugs or toxins. To extract common response 
mechanisms integrating all conditions is of high value. To this end, this study collects, 
processes and aggregates published transcriptome data from studies that examined 
the response using both direct and indirect oxidative stress induction methods. 
Interestingly, carbon metabolism, oxidation reduction processes and glutathione 
metabolic process were found to be the common mechanisms involved in oxidative 
stress response. However, ion homeostasis and hexose transport mechanisms have 
been shown to be affected from direct induction using peroxides. This result illustrates 
bioinformatics analysis for large, aggregated transcriptome datasets, as a 
steppingstone for finding common features and further metabolic engineering targets 
were developed. 

 
Introduction 
 

Oxidative stress is ubiquitous in living systems from 
microorganisms to plants and mammalian systems, 
manifested as the imbalance between the generation of 
reactive oxygen species (ROS) and the capacity of the 
biological system to detoxify these intermediates (Inzé 
& Van Montagu, 1995; Sies, 2000; Storz & Imlayt, 1999). 
The excess free radicals result in damage to fatty tissue, 
DNA, and proteins causing in turn loss of function, yield 
or life quality. Coupled with redox imbalance, oxidative 
stress typically induces system-wide response, involving 
several transcripts, proteins and biochemical reactions, 
spanning several omic-layers.  

Cells develop complex responses and protection 
mechanisms to maintain intracellular redox balances 
against oxidative stress. Responses to oxidative stress 
are usually on cell survival or cell death mechanisms. Cell 

survival mechanisms involves antioxidant enzyme 
mechanisms (SOD, catalase, peroxidase reactions), 
metabolic products (glutathione, used in almost all 
eukaryotes) (Poljak et al., 2003), upregulation of various 
transcription factors (Yap1p, Skn7p, Msn2/4p 
(Diezmann, 2014)). Besides, necrosis, apoptosis and 
autophagy are the cell death mechanisms against 
oxidative stress. These programmed cell death 
responses of the cell shed light on neurodegenerative 
diseases and cancer studies (Figure 1) (Farrugia & 
Balzan, 2012; Harding et al., 2003; Luo et al., 2017). 

Bakers yeast, Saccharomyces cerevisiae, has long 
been used for centuries not only for making bread or 
various drinks, but also as food supplement, feed 
additive (Newbold et al., 1996) as well as for production 
of bioplastics and other biomaterials (Breuer et al., 
2002), biofuels (Cardona et al., 2009) and within medical 
context (Borresen et al., 2012). As such, it is considered 
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Figure1. A general overview for causes and possible consequences of oxidative stress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as a model organism for eukaryotic systems as well as an 
important workhorse for industrial biotechnology 
(Giaever et al., 2002; Hartwell, 1974; Lee et al., 2002; Li 
et al., 2004; Mager & Winderickx, 2005; Nevoigt, 2008; 
Oliver, 1996; Petranovic & Vemuri, 2009). The 
availability of genome sequence (Wei et al., 2007) as 
well as various molecular biology tools (McIsaac et al., 
2014) renders yeast central not only to understand how 
cellular machinery works but also for further metabolic 
engineering studies.  

Yeasts are exposed to various stresses (heat, pH, 
nutrient limitation, osmotic, oxidative) in the industrial 
context and/or changing environmental conditions. 
Oxidative stress is an inevitable part of the aerobic life 
cycles of yeasts. The oxidative stress response in yeast 
has been evaluated with different perspectives of 
finding toxicity level of stress agents (Flattery-O'Brien et 
al., 1993; Jamieson, 1992), identifying the cellular 
mechanisms (Davies et al., 1995; Gasch et al., 2000), 
determining stress related genes with mutant strains 
(Grant et al., 1996, 1998; Okada et al., 2014) and 
understanding the main mechanisms (Cyrne et al., 2003; 
Godon et al., 1998; Gopalacharyulu et al., 2009; 
Matallana & Aranda, 2017; Peláez-Soto et al., 2020; 
Piedrafita et al., 2015; Ralser et al., 2007; Yoshimoto et 
al., 2019). Stress responses have also been studied for 
living systems for various taxa, ranging from bacteria 
(Christodoulou et al., 2018; Zhai et al., 2020) to plant 
cells (Sipari et al., 2020) and other higher eukaryotes (Yu 
et al., 2020). 

In particular, there are several studies focusing on 
transcriptomic (TX) response. Many studies that 
investigate transcription factors such as Yap1, Skn7 and 

Msn2/4 that regulates oxidative stress response 
(Carmel-Harel et al., 2001; Livas et al., 2011; Ma & Liu, 
2010; Ouyang et al., 2011; Sha et al., 2013), antioxidant 
defense mechanisms such as catalases, SOD, 
thioredoxins and other cellular responses such as cell 
death and apoptosis following oxidative stress can be 
found in the literature. However these data obtained 
from different analysis platforms, oxidative stress 
inducers and many other experimental and analysis 
techniques (Cheng et al., 2018; Farrugia et al., 2019; 
Rodriguez-Colman et al., 2010). Although these studies 
provide useful information, they cannot be compared to 
other results of experiments, yet aggregation is of great 
interest to distill common features of stress response in 
yeast cells.  

A significant challenge in analyzing large scale –
omic datasets compiled from different sources is to 
extract key information from experiments performed 
individually with various agenda, using different 
techniques or agents, by different labs and/or 
technicians. In particular for oxidative stress, different 
labs used various agents (H2O2, CHP) to induce the 
stress, alternative techniques (cDNA microarray, 
oligonucleotide microarray, qPCR, RNA-Seq), alternative 
experimental design (time-course, static, comparison 
with a selected mutant) and various strains of 
Saccharomyces cereviasiae under different growth 
conditions. Even the purpose of each experiments 
ranges from determination of toxic/lethal effect to 
finding resistance genes to stress. A promising approach 
to analyze omic-dataset from different backgrounds is 
to perform so-called, meta-analysis of such data. In its 
essence, meta-analysis aims to aggregate available data 
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or information and find key features underlying the 
system of interest. The approach has been used within 
various context including oncogenetics (Bhasin et al., 
2016), biomarker for plant biotechnology (Zimmermann 
et al., 2008), stem cell research (Assou et al., 2007) 
finding stress responsive pathways (Panahi et al., 2019) 
with even dedicated databases (Hruz et al., 2008).  

Rank aggregation is one proposed method for 
meta-analysis e.g. to combine TX data obtained from 
different sources (Wald et al., 2012a, 2012b), since the 
results of high-throughput genomics experiments 
contain significant amount of noise, and thus reliability 
of the results should be supported by combining 
evidences from different experiments or platforms. 
Therefore, rank aggregation methods provide less noisy 
results by combining several preference lists. Different 
approaches proposed in the literature and Robust Rank 
Aggregation is one of the distribution based approaches 
which assumes a null probabilistic model to compare 
each ranked list (Li et al., 2019). The approach consists 
of focusing on the ranks of genes from individual 
transcriptome studies, rather than the expression value 
itself and aggregating list of ranks, assuming beta-
distribution for the underlying population of lists and 
scores each element of the combined list with a 
corrected p-value. These corrected p-values are sorted 
to obtain final aggregated ranks. (Kolde et al., 2012; Li et 
al., 2019)  

The advent of high-throughput omic technologies 
generated ever-growing immense amount of data, 
which in turn, remains largely under-used and under-
interpreted. Making more of the available –omic data is 
the main approach of our work. The aim of this study is 
therefore to collect, analyze, aggregate and perform 
functional analysis of available transcriptome data from 
response of yeast cells to various oxidative stresses, 
within the scope of further understanding the effect of 
this stress on Saccharomyces cerevisiae cells and finding 
common features among different experiments using 
bioinformatics tools. In doing so, microarray datasets 
from NCBI database is collected, inspected for 
differential expression and compiled a large dataset 
containing differentially expressed genes in each 
experiment. Upon rank aggregation and downstream 
functional analysis, the implications within industrial 
biotechnology is discussed.  

 
Materials and Methods 
 

Data Acquisition and Differential Expression 
Analysis 

All data used in this study has been compiled from 
public sources. Overall workflow to obtain the 
transcriptome dataset is presented in Figure 2, including 
the number of datasets in each step. NCBI Gene 
Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/) was searched for 
the term “oxidative stress” and further filtered for 
“Saccharomyces cerevisiae”.  

In this paper, we focused on microarray data, due 
to standardized experimental and analytical protocols 
and focused experimental context. In particular, the 
microarray results from the experiments measuring the 
cellular response against treatments with oxidants such 
as peroxides (e.g. H2O2, CHP), drugs (e.g. Epolauridine) 
and toxins (e.g. citrinin), directly causing oxidative 
stress. The list of datasets for the final meta-analysis is 
given in Table 1. For samples with replicates (23 of 34 
samples), from documented commercial microarray 
platforms, Differentially Expressed Gene (DEG) analysis 
was performed using R limma package (two dye, dye 
swap and time course designs are also included) and the 
results were filtered for p<0.1 and log fold change, 
logFC>1. For the samples without replicates, the 
published logFC was used with the same criteria.  

 
Table 1. Datasets used for meta-analysis. 
Stress Inducer  Accession IDs 

H2O2 

GSE45370, GSE58992, 
GSE135546, GSE79037, 
GSE63030, GSE16346, 
GSE26829, GSE55081, 
GSE12220, GSE15936, 
GSE3406, GSE2977 

Linoleic acid hydroperoxide 
(LoaOOH) 

GSE18334, GSE47820, 
GSE54951,  

CHP GSE7645, GSE26169 

Oxygen concentration GSE22832 

Transition from anaerobic to aerobic GSE7140 

TiO2 + UV GSE99660 

Mycotoxins: citrinin (CIT) and 
ochratoxin A (OTA) GSE84187 

Pyocyanin  GSE6185 

Eupolauridine-9591 (E9591) GSE101749 

Menadione GSE3683 

Celastrol  GSE5608 

Arsenite GSE6067, GSE6068 

Zinc GSE18411 

Potassium GSE24712 

 
For time-course experiments (11 of 34), the last 

time point or, 30/60/90-minute time point (if available) 
was compared to control taken prior to treatment. For 
each sample, the absolute values of logFC upon filtering 
were ranked in increasing order and these ranks were 
normalized with respect to maximum rank in the 
corresponding sample. Finally, normalized ranks for 
each gene among all of the samples were merged to 
generate the rank matrix that contains normalized ranks 
of 6039 ORF’s in 34 samples. 
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Figure 2. Transcriptome data acquisition workflow to compile the data used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Aggregation of transcriptome data 
The aggregation of transcriptome data is 

performed using Robust Rank Aggregation algorithm 
and the R package RobustRankAggreg (Kolde et al., 
2012). In case the transcript level for a specific probe, 
the corresponding entry to the rank matrix was replaced 
with maximum normalized rank value, namely 1. The 
rank matrix was aggregated using aggregateRanks 
function, which calculates 𝜌-scores for each transcript 
and sorts them in increasing order. 

 
Functional analysis of differentially expressed 

genes in aggregated list 
 
GO and KEGG Enrichment  
 
For the ORF’s that are overrepresented in all 

datasets are determined based on their 𝜌-scores, and a 
cutoff-score of 0.1. For overrepresented genes (𝜌 <
0.1), gene set enrichment analysis based on Gene 
Onthology (GO) and KEGG pathways were performed 
using R packages clusterProfiler and org.Sc.sgd.db 
Bioconductor genome wide annotation for yeast, and 
DAVID Gene Functional Annotation and Classification 
Tools (https://david.ncifcrf.gov/home.jsp) and AmiGO 
database (Carbon et al., 2009). For GO annotation for all 
GO ontologies, molecular function, bioprocess and 
cellular component, were performed using enrichGO 
function using Ensembl ID’s as key types, false discovery 
rate as p value adjustment method and p-value cutoff 
was set to 0.1 (same in KEGG enrichment). The KEGG 
annotation was performed similarly using NCBI Gene 
ID’s as keys using enrichKEGG function.  

  

Results and Discussion 
 

This study focuses on finding common and 
significant gene sets, differentially expressed upon 
oxidative stress, using meta-analysis of transcriptome 
data, collected from public databases. The robust rank 
aggregation method used here allows to 
overrepresented genes. It should be noted that the final 
set of genes may or may not be the most differentially 
expressed all together in a single dataset, rather, the 
final set of genes are differentially expressed in most 
(evaluated with statistically significance) of the datasets 
considered. The overall workflow for selection of 
microarray transcriptome datasets is given in Figure 2. 
The selected final datasets with 34 samples include 
direct or indirect induction of oxidative stress response 
on wild-type strains, while studies including mutant 
strains, investigating unconventional conditions such as 
radioactive materials or freezing were not considered. 
This way, more focused experimental context was 
obtained.  

DEG analysis was de novo performed for series 
containing replicates or series where raw data is 
available in .CEL, .txt or .gpr formats. The ranking of 
transcripts was performed based on absolute logFC, so 
up- or downregulation was not separately investigated 
in aggregated list. Normalization of the ranks 
considering the number of the differentially expressed 
genes allows lowering the effect of unreliable DEG lists. 
In case, the raw data or replicates are not available in a 
specific dataset, statistical significance of the differential 
expression cannot be known, yet, published information 
on logFC is used to obtain statistically significant 
aggregated ranks. 
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Table 2. 𝜌-scores of significantly differentially expressed genes in analyses containing all samples and only samples with direct 
induction of oxidative stress. 

ORF Description ρ Score 
(All Samples) 

ρ Score 
(Direct induction) 

YPL171C NADPH dehydrogenase 2.80E-09 2.26E-06 

YKL071W NADH-dependent aldehyde reductase 1.14E-08 0.001887 

YKL086W sulfiredoxin 6.72E-08 6.57E-06 

YDR453C thioredoxin peroxidase TSA2 2.07E-06 9.28E-05 

YOL052C-A Ddr2p, Multi-stress response protein 1.54E-05 0.017453 

YBR072W chaperone protein HSP26 3.25E-05 0.084638 

YCR021C Hsp30p 4.89E-05 0.043349 

YMR090W Putative protein of unknown function 6.28E-05 - 

YLL060C glutathione transferase GTT2 2.54E-04 0.006030 

YOR382W Fit2p 2.83E-04 0.003935 

YHR048W Yhk8p 3.05E-04 1.12E-04 

YER103W Hsp70 family chaperone SSA4 4.07E-04 - 

YHR087W Rtc3p 0.000776 0.044299 

YCL026C-A type II nitroreductase 0.001375 0.003311 

YLR327C Tma10p 0.001497 - 

YGR248W 6-phosphogluconolactonase SOL4 0.002262 0.071480 

YML131W Protein of unknown function 0.002967 - 

YKR076W S-glutathionyl-(chloro)hydroquinone reductase 0.003412 0.035562 

YDL243C putative aryl-alcohol dehydrogenase 0.005133 - 

YGR088W catalase T 0.005402 
 

YFL053W dihydroxyacetone kinase 0.006326 0.024013 

YBR244W glutathione peroxidase GPX2 0.007829 0.015116 

YGR224W azole transporter 0.007841 - 

YER067W Rgi1p 0.008506 - 

YFL014W lipid-binding protein HSP12 0.012983 - 

YMR173W DNA damage-responsive protein 48 0.019120 0.069446 

YFL056C Putative aryl-alcohol dehydrogenase 0.023097 - 

YDR171W heat shock protein HSP42 0.023735 - 

YNL194C Integral membrane protein 0.026158 - 

YDR256C catalase A 0.028125 0.093993 

YLR205C Hmx1p 0.031368 0.011914 

YDL204W Rtn2p 0.035241 - 

YGR008C ATPase-stabilizing factor family protein 0.036289 - 

Upon DEG analysis for each sample, the normalized 
rank lists from each sample were merged to obtain 
10715x34 rank matrix (10715 ORF’s and 34 samples) 
containing normalized rank list, one for each sample. 
Following the work of Kolde 2012, p-values for beta 
distribution were calculated (and corrected for possible 
false positives due to multiple hypothesis testing) for 
each transcript. Finally, 83 ORF’s have 𝜌-score less than 
1 and 42 of these were considered to be 
overrepresented in all data set (𝜌 < 0.1, Table 2). 

Oxidative stress might be induced directly by 
perturbing the culture with e.g. a hyperoxide or 

indirectly using excess aeration. To assess whether the 
stress induction method delivers different set of genes 
or not, a subset of 10 DEG lists that contains only direct 
induction methods by H2O2, LoaOOH and CHP, were 
aggregated. Comparison of the results were shown in 
Figure 3. In this case, 23 of the 10715 ORF’s had 𝜌-score 
less than 0.1. Interestingly, the 23 ORFs were not a 
subset of the initial list 43 ORF’s obtained from the 
dataset with 34 samples, though several genes are 
shared between these two lists (Figure 3). 
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Table 2. (continued) 

YML128C Msc1p 0.038967 - 

YLR346C Cis1p 0.045650 - 

YHR139C Sps100p 0.046043 0.054276 

YDR533C glutathione-independent methylglyoxalase 0.050285 - 

YOL151W methylglyoxal reductase (NADPH-dependent) GRE2 0.056597 0.040635 

YGR035C Putative protein of unknown function, 0.065623 - 

YDL246C L-iditol 2-dehydrogenase SOR2 0.071729 - 

YKL070W uncharacterized protein 0.095622 - 

YLR136C Tis11p - 0.037149 

YFR053C hexokinase 1 - 0.050526 

YBR047W Fmp23p - 0.054616 

YMR011W hexose transporter HXT2 - 0.072490 

YJR005C-A Lso1p - 0.097781 

YPR030W Csr2p - 0.098063 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Venn diagram of the number of ORF’s that are 
differentially expressed in aggregated list of all samples and 
the samples that were obtained from direct induction 
experiments with replicates. 

To gain further insights on the functions of the 
aggregated list of genes, gene set enrichment analysis 
based on GO-terms was performed. Enriched GO-terms 
in the resulting gene set in terms of biological process 
and molecular function are presented in Figure 4a and 
4b. Most overrepresented GO-terms are oxidative stress 
(30% of the genes), cellular response to chemical 
stimulus (36% of the genes) and oxidation-reduction 
process (40% of the genes) for both “all samples” and 
“direct oxidative stress method samples” lists.  

Interestingly, 2 genes in both lists are annotated to 
be involved in glutathione metabolic process. 
Differences also exists in enriched GO-terms, in both 
lists. In direct induction list, 5 (out of 28) genes are 
annotated in chemical homeostasis and 2 genes are 
annotated in fructose/glucose transmembrane 
transport. In molecular function, similar GO-term 
landscape is observed. In “all samples list”, 14 genes are 
annotated in oxidoreductase activity, 2 genes in 
glutathione reductase activity. Lastly for cellular 
component, 60% of the ORFs were located in cytoplasm, 
15% in cell periphery and 18% in plasma membrane. 
Further manual annotation using Yeast Genome 
(https://www.yeastgenome.org) website resulted in 16 

manually curated GO-cellular component annotation, 8 
in cytoplasm and 5 in nucleus. 

To get more insight into gene sets, we further 
focused on the set of genes in two GO terms, (i) 
glutathione metabolic process (GO:0006749) and 
response to oxidative stress (GO:0006979), containing 
19 ORF’s and 125 ORF’s respectively according to 
AmiGO. For those ORFs, the 𝜌-scores were plotted, 
showing the count of the samples that the specific ORF 
was differentially expressed (Figure 5). For glutathione 
metabolic process, 18 of the genes were found to be 
differentially expressed in more than two samples, but 
only two of them YKR076W (ECM4, differentially 
expressed in 18 samples) and YLL060C (GTT2, 
differentially expressed in 20 samples) were found to be 
significantly different in all samples. For response to 
oxidative stress, twelve of 125 genes were found to be 
significantly differentially expressed in all samples 
(average number of samples that these genes were 
found to be differentially expressed 16).  

Upon aggregation, 28 genes were found to be 
significantly overrepresented in the lists of differential 
expressed genes from individual experiments. These 
genes are categorized as responsible for antioxidant 
capacity, oxidoreductase activity (acting on peroxide as 
acceptor, acting on a sulfur group of donors, and acting 
on NAD(P)H), peroxidase mechanisms, glutathione 
transferase activity, peroxiredoxin mechanisms, heme 
binding and tetrapyrrole binding activities. The majority 
of the above stated functions are related to the electron 
transfers or mechanisms for reducing the oxidative 
stress. 

These genes are further inspected in KEGG 
database to further probe their biological context. 
Significant hits are observed at longevity regulating 
pathway, carbon metabolism, tryptophan metabolism, 
fructose and mannose metabolism, protein processing 
in endoplasmic reticulum, glyoxylate and dicarboxylate 
metabolism, MAPK signaling pathway – yeast, 
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Figure 4. GO enrichment results for all list of samples which direct induction applied (a) GO-Bioprocess (b) GO-Molecular 
function.

 

 

 

 

 

 

 

Figure 1. (a) Rank scores of ORF’s involved in glutathione metabolic process. ORF’s that differentially expressed were shown with 
black dots, line represents significance level (rho=0.1) and marker sizes refer to number of samples that these ORF’s were found to 
be differentially expressed. (b) Rank scores of ORF’s involved in response to oxidative stress. ORF’s that differentially expressed 
were shown with black dots, line represents significance level (ρ=0.1) and marker sizes refer to number of samples that these ORF’s 
were found to be differentially expressed. 

peroxisome, pyruvate metabolism, pentose and 
glucuronate interconversions and propanoate 
metabolism. Interestingly, when the focused dataset 
(direct oxidative stress), carbon metabolism and 
fructose and mannose metabolism are the main hits 
metabolic pathways, especially with hydrogen peroxide-
induced oxidative stress, aiming at increasing NADPH, an 
important cofactor in the oxidation reduction 
mechanisms (glutaredoxins, thioredoxins). Also, 
trehalose synthesis and synthesis of three enzymes 

(glucose-6-phosphate dehydrogenase, transketolases 
and transaldolase) of pentose phosphate pathways 
induced (Godon et al., 1998) overall increasing NADPH 
levels. 

Next to cofactor balances, oxidative stress also 
induces antioxidant defense mechanisms, a protein 
degradation pathway. Glutathione plays a role against 
oxidative stress in yeast both as a metabolite in non-
enzymatic mechanisms and as a cofactor in enzymatic 
mechanisms (glutathione peroxidase, glutathione 
reductase (Douglas, 1987; Meister, 1988)). The protein 
degradation via H2O2–induced oxidative stress causing 
oxidation of major proteins (pyruvate decarboxylase, 
fatty acid synthase, and glyceraldehyde-3-phosphate 
dehydrogenase (Tdh)) are also separately reported in 
literature (Cabiscol et al., 2000). 

This work combines several datasets related to 
oxidative stress in yeast. It should be noted that a typical 
extension is a detailed analysis that would require 
careful grouping taking into account each stressor as 
well as corresponding (known) defense or response 
mechanisms and intracellular indicators (protein 
carbonylation, Thiobarbituric acid reactive substances 
(TBARS) etc). In selecting the datasets (Hata! Başvuru 
kaynağı bulunamadı.), we adopt a top-down approach 
and care is taken not to “over-slice” the data by too-
detailed-subgrouping, allowing not to lose general 
features. 

In performing meta-analysis studies, one expected 
pitfall is on dosage experiments, where the level of 
stressor triggers different or additional 
response/defense mechanisms. In that case, the ranking 
of a selected transcript will like change. However, 
considering nearly 6000 all genes in yeast, it would be 
highly unlikely to find such a finely tuned transcript that 
would be common key to all experiments due to 
robustness of metabolism. One specific transcript will be 
of key importance of that specific, isolated experiment, 
and is expected to be diluted over other experiments. In 
contrast, the transcripts in first couple of rows in Table 
2 are found nearly always among top 20 differentially 
expressed genes.  
 
Conclusion 

 



15 
Biotech Studies 29(1), 8-17 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

reductase (Douglas, 1987, Meister, 1988). The protein 
degradation via H2O2–induced oxidative stress causing 
oxidation of major proteins (pyruvate decarboxylase, 
fatty acid synthase, and glyceraldehyde-3-phosphate 
dehydrogenase (Tdh) are also separately reported in 
literature (Cabiscol et al., 2000). 

This work combines several datasets related to 
oxidative stress in yeast. It should be noted that a typical 
extension is a detailed analysis that would require 
careful grouping taking into account each stressor as 
well as corresponding (known) defense or response 
mechanisms and intracellular indicators (protein 
carbonylation, Thiobarbituric Acid Reactive Substances 
(TBARS) etc.). In selecting the datasets (Figure 2), we 
adopt a top-down approach and care is taken not to 
“over-slice” the data by too-detailed-subgrouping, 
allowing not to lose general features. 

In performing meta-analysis studies, one expected 
pitfall is on dosage experiments, where the level of 
stressor triggers different or additional 
response/defense mechanisms. In that case, the ranking 
of a selected transcript will like change. However, 
considering nearly 6000 all genes in yeast, it would be 
highly unlikely to find such a finely tuned transcript that 
would be common key to all experiments due to 
robustness of metabolism. One specific transcript will be 
of key importance of that specific, isolated experiment, 
and is expected to be diluted over other experiments. In 
contrast, the transcripts in first couple of rows in Table 
2 are found nearly always among top 20 differentially 
expressed genes.  
 
Conclusion 

 
Identification of key processes as a response to 

environmental stress is one of the key problems in 
biology, not only for our fundamental understanding but 
also to rational design of improved industrial strains and 
processes. Focusing on oxidative stress response, robust 
rank aggregation was performed to extract useful 
information from various experiments as individual 
experiments uses different techniques, have different 
agenda and are performed by different labs. This work 
strived for finding metabolic engineering targets for 
improved yields and productivities of industrially 
important microorganisms. Analysis underlined that key 
processes center around carbon, redox and glutathione 
metabolism and pointed interplay among those. In 
conclusion, this study illustrates bioinformatics analysis 
on capturing common features in a large, aggregated 
datasets and points to key common features and further 
metabolic engineering targets. Further investigation on 
distribution and possible redirection of metabolic fluxes 
allow further pinpointing key reactions.  
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