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Abstract 
 
Lung cancer is one of the most occurring and death-causing cancers worldwide. 
Despite the progress, survival rate is still low due to the late diagnosis. The aim of this 
study is to develop a computational framework to identify potential prognostic 
biomarkers for lung adenocarcinoma (LUAD). Gene expression profiles obtained from 
three independent studies were analyzed to find differentially expressed genes (DEGs) 
in LUAD. Disease-specific protein-protein interaction (PPI) network was constructed 
among common DEGs and hub proteins were identified. Gene expression data was 
integrated with the human transcriptional regulatory network (TRN) to identify key 
regulatory elements and construct disease-specific TRN. Hub proteins that were also 
present in TRN of LUAD were considered as potential biomarkers and assessed by 
survival analysis. AURKA, CAV1, CLU, ENO1, FHL1, FHL2, LMO2, MYH11, NME1 and SFN 
were discovered as biomarkers for LUAD, and survival analysis not only indicated their 
significant prognostic performance as a group, but also revealed their contribution to 
the discrimination of risk groups. Our findings suggested that identified biomarkers 
could be valuable in LUAD progression and they should be considered for further 
experimentation. 

 

Introduction 
 

Lung cancer is one of the most malignant tumors 
and the leading cause of cancer-associated deaths (Yan 
et al., 2019). Lung cancer is mainly classified as small cell 
and non-small cell lung cancer (NSCLC). NSCLC, which 
accounts for approximately 85% of all the patients, has 
three main pathological subtypes, including 
adenocarcinoma (AD), squamous cell carcinoma (SCC), 
and large cell carcinoma (LCC). When compared to 
others, AD is the most common type (approximately 
50%) (Cagle et al., 2013). Despite the increased 
understanding of the molecular mechanisms associated 
with lung cancer and the improvements in traditional 
treatment, the overall survival rate still remains low. 
Most patients are diagnosed in a late stage. Therefore, 
the early detection and diagnosis of the disease can 
improve the prognosis, increase the survival rate and 

lower the mortality rate (Villalobos & Wistuba, 2017; 
Yan et al., 2019). 

Biological cancer markers are used for diagnostic, 
prognostic and treatment purposes (Villalobos & 
Wistuba, 2017). The targeted therapies in patients with 
EGFR mutations and/or ALK translocations improved 
survival (Patel et al., 2015), suggesting that the genomic 
biomarkers can serve not only for early diagnosis of the 
disease, but also for targeted therapies (Li et al., 2019; 
Villalobos & Wistuba, 2017). Moreover, the 
identification of the mutations, gene amplifications, 
deletions, or the presence of the fusion genes, which are 
accepted as the genetic risk factors associated with lung 
cancer would lead to developing treatments (Otálora-
Otálora et al., 2019). Therefore, the search for novel 
biomarkers is of great significance and new methods to 
identify biomarkers with high prognostic performance 
need to be developed. 

https://orcid.org/0000-0003-2970-387X
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Microarray technology has been extensively used 
to identify genes with altered expressions during 
tumorigenesis, and therefore, enhances our 
understanding of the genetics and the molecular biology 
of cancer (Cieślik & Chinnaiyan, 2018). The identification 
of the transcriptionally dysregulated genes and their 
associated biological processes and signaling pathways 
allow us to understand the expression patterns related 
to tumor’s biological state and the patients’ survival 
(Otálora-Otálora et al., 2019). Moreover, the integration 
of transcriptome with biological and regulatory 
networks provide an opportunity to discover novel 
prognostic biomarkers and therapeutic strategies (Gov 
et al., 2017).  

In the present study, a computational framework 
was developed to identify potential biomarkers for 
LUAD (Figure 1). For this purpose, firstly, gene 
expression data from three independent studies were 
analyzed and common DEGs, biological processes and 
molecular pathways involved in LUAD were determined. 
Secondly, a disease-specific PPI network was 
reconstructed with common DEGs and hub proteins 
were determined via simultaneous analysis of twelve 
node scoring metrics. Then, key regulatory elements 
involved in LUAD were identified by statistical analysis 
using hypergeometric probability distribution function 
and disease-specific TRN was constructed by common 
key regulatory elements interacted with common DEG 
targets. A total of ten genes that were identified as hub 
genes of LUAD specific PPI network and also present in 
LUAD specific TRN, were determined as potential 
biomarkers. Finally, survival analysis was conducted to 
evaluate their prognostic capabilities and biomarker 
genes showed significant prognostic performances and 
high capabilities in classifying risk groups. 

 
Figure 1. Schematic illustration of the system-based 
integrative analysis carried out in the present study. 

 
Materials and Methods 
 
Gene expression data collection and analysis 

Gene expression datasets from three independent 
studies [GSE118370 (Xu Liyun et al., 2018), E-MTAB-

5231 (Willuda et al., 2017), and GSE40791 (Y. Zhang et 
al., 2012)] associated with LUAD were selected from 
ArrayExpress or Gene Expression Omnibus databases. 
The datasets obtained by Affymetrix Human Genome 
U133 Plus 2.0 arrays were used to avoid altered gene 
expressions due to microarray differences. GSE118370 
was consisted of tumor and paired adjacent non-tumor 
tissues from 6 LUAD patients. E-MTAB-5231 contained 
22 NSCLC samples, including AD and SCC samples, and 
18 normal lung tissues adjacent to tumor samples. Since 
AD subtype was specifically investigated in this study, 
SCC samples were excluded from this dataset and data 
obtained from samples of two stage I and seven stage II 
LUAD patients were analyzed. GSE40791 contained 94 
tumor tissues from 69, 12, and 13 stage I, II, and III LUAD 
patients, respectively and 100 non-tumor tissues. Two 
independent datasets, GSE63459 (Robles et al., 2016) 
containing 33 stage I LUAD tissues and their non-tumor 
adjacent tissues, and GSE75037 (Girard et al., 2017) 
containing 83 samples from LUAD tissues and their non-
malignant adjacent tissues were used to assess the 
expression of candidate biomarker genes. By using these 
two datasets, principal component analysis (PCA) was 
performed via R software (R Core Team, 2020) to 
elucidate whether the candidate biomarker genes could 
discriminate LUAD tissues and non-tumoral tissues 
according to gene expression levels. 

Each gene expression dataset was normalized 
independently and the associated significantly 
expressed genes were determined using 
R/Bioconductor (Gentleman et al., 2004). Quantile 
normalization was performed by RMA (Bolstad et al., 
2003) option of the affy package (Gautier et al., 2004) 
and multiple testing option of LIMMA (Smyth, 2004) was 
used for statistical analysis. The false-discovery rate was 
controlled by Benjamini-Hochberg’s method (Benjamini 
& Hochberg, 1995). An adjusted P-value threshold of 
0.05 was used to determine the significance of gene 
expression and the genes showing at least 2-fold change 
(FC) in their expression levels were identified. The genes 
satisfying both P-value and FC thresholds, were defined 
as DEGs. Scatter volcano plots were constructed via R 
using log2 FCs and corresponding P-values of all genes in 
gene expression data. A heat map that represents gene 
expression profiles of common DEGs among all samples, 
was plotted using R. Overrepresentation analyses were 
performed by ConsensusPathDB (Kamburov et al., 
2013), and a P-value threshold of 0.05 was used to 
identify significantly enriched KEGG pathways and GO 
biological processes associated with DEGs.  
 
Reconstruction of disease-specific protein-protein 
interaction network 

To construct a PPI network of LUAD, physical 
interactions between the proteins encoded by common 
DEGs were extracted from BioGrid (Stark et al., 2006) 
database release 4.2.191. This network was further 
analyzed and visualized via Cytoscape (Shannon et al., 
2003) version 3.7.2. To identify hub proteins, node 
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scores were determined using CytoHubba (Chin et al., 
2014). All nodes were ranked based on twelve scoring 
metrics, including degree, maximal clique centrality 
(MCC), maximum neighborhood component (MNC), 
density of maximum neighborhood component (DMNC), 
betweenness, edge percolated component (EPC), 
bottleneck, eccentricity, closeness, radiality, clustering 
coefficient (CC) and stress. Top ten proteins of each 
scoring metric were isolated and the proteins that were 
commonly identified by at least five scoring methods 
were determined as hub proteins. 
 
Reconstruction of disease-specific transcriptional 
regulatory network 

The reported transcription factor (TF)-target gene 
interactions in HTRIdb (Bovolenta et al., 2012) and 
TRRUST v2 (Han et al., 2018) databases, as well as 
microRNA (miRNA)-target gene interactions with strong 
experimental evidences deposited in miRTarBase 
release 8.0 (Chou et al., 2018) and miRecords (Xiao et 
al., 2009) databases were used to reconstruct human 
TRN. The constructed network was composed of 25669 
interactions between 827 TFs and 12659 genes; and 
9905 interactions between 844 miRNAs and 3269 genes. 
For each gene expression dataset, TF-target DEG and 
miRNA-target DEG interactions were extracted from 
human TRN. Enrichment analysis were conducted using 
hypergeometric distribution function, and P-value 
threshold of 0.05 was used to identify key regulatory 
elements, i.e., TFs and miRNAs, in the presence of LUAD. 
Disease-specific TRN was constructed by employing key 
regulatory elements that were found to be common in 
three datasets interacted with common DEGs.  
 
Identification of potential biomarkers for LUAD 

Candidate biomarkers for LUAD were determined 
by simultaneous analysis of disease-specific networks, 
i.e., PPI and TRN. Genes that encode hub proteins and 
are also present in the disease-specific TRN were 
considered as potential biomarkers for LUAD. The 
disease involvements of key TFs and biomarker genes as 
well as their prognostic capabilities in cancer were 
investigated via Human Protein Atlas available from 
http://www.proteinatlas.org (Uhlen et al., 2017). 
Human miRNA and disease associations were identified 
by the Human microRNA Disease Database (HMDD v 
3.2) (Lu et al., 2008). 
 
Survival analysis 

The prognostic capabilities of potential biomarkers 
were assessed using gene expression data containing 
475 samples obtained from TCGA. Cox proportional 
hazards regression analysis was carried out via 
SurvExpress (Aguirre-Gamboa et al., 2013), and 
according to the prognostic index, patients were 
classified as high- and low-risk groups. Gene expression 
levels of risk groups and survival times were visualized 
by box-plots and Kaplan-Meier plots, respectively. A log-

rank P-value cut-off was maintained as 0.05 to define 
the statistical significance of survival.  

 
Results 
 
Analysis of significantly and differentially expressed 
genes 

The gene expression profiles of tumoral and non-
tumoral lung tissues obtained from three independent 
studies were comparatively analyzed. A total of 1349 
genes (425 up, 924 down), 1447 genes (666 up, 781 
down), 2202 genes (777 up, 1425 down) were identified 
as DEGs in GSE118370, E-MTAB-5231, GSE40791, 
respectively, and scatter volcano plots were plotted to 
illustrate the distribution of each gene according to the 
log2FC and –log (P-value) values (Figure 2a). Although 
the numbers of DEGs among datasets were 
incompatible, 432 DEGs (83 up- and 349 down-
regulated) were found to be significantly expressed in 
common (Figure 2b). A heat map showed the expression 
profiles of common 432 DEGs identified in the analysis. 
The common 432 DEGs, including 349 significantly 
down-regulated genes and 83 significantly up-regulated 
genes, could effectively distinguish LUAD samples from 
normal samples (Figure 2c). Since common DEGs might 
hold important information on LUAD, the significantly 
enriched GO biological process terms and KEGG 
pathways (Figure 3a) and protein classes (Figure 3b) 
associated with these genes were identified. 
 

 
Figure 2. a) The volcano plots for the transcriptome datasets. 
The x-axis represents the log2 transform of fold change ratios; 
the y-axis represents the log10 transformed adjusted P-value. 
The red and green colored dots represent the up- and down-
regulated DEGs, respectively. b) Venn diagram representing 
the comparison of DEGs in the datasets. c) Heatmap 
representation of common DEGs. 
 

A total of 83 genes, which were commonly induced 
in LUAD tissues, were found to be significantly 
associated with cell cycle, DNA damage, cell adhesion, 
and extracellular matrix (ECM) related processes. The 
top significant processes related to the commonly 
repressed 349 genes were angiogenesis, cell adhesion, 
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Figure 4. LUAD specific PPI network (dark blue nodes represent hub proteins). 

vasculogenesis, and ECM organization. Moreover, 
pathway analysis indicated vascular smooth muscle 
contraction, ECM-receptor interaction, cGMP-PKG 
signaling pathways among the significantly enriched 
KEGG pathways of 432 common DEGs. 
 

 
Figure 3. a) Significantly enriched KEGG pathways of common 
DEGs. b) Panther protein classes of common DEGs. 

 
Identification of hub proteins 

LUAD specific PPI network constructed by 
collecting interactions between the proteins encoded by 
common DEGs, contained 204 interactions between 165 
proteins (Figure 4). Hub proteins, which might have 
important roles in the progression of the disease, were 
determined by simultaneous investigation of twelve 
scoring metrics. The proteins that are among the top ten 
proteins determined by at least five scoring metrics 
were identified as hub proteins. Aurka, Cav1, Chmp4c, 
Clu, Eno1, Fhl1, Fhl2, Lmo2, Myh10, Myh11, Nme1 and 
Sfn were found as hub proteins. 
 

Identification of key regulatory elements 
Transcriptional and post-transcriptional regulatory 

changes in the presence of LUAD were elucidated by 
integrative analysis of gene expression data and the 
constructed human TRN. Key regulatory elements for 
each dataset were determined by extracting TF-DEG and 
miRNA-DEG interactions from human TRN and 
calculating hypergeometric probability in the disease 
state considering a statistical significance threshold of P-
value < 0.05. Key miRNAs, including miR-103a-3p, miR-
135a-5p, miR-200c-3p, miR-203a-3p, miR-204-5p, miR-
21, miR-223, miR-25-3p and miR-29a-3p were identified 
in LUAD (Table 1). Disease associations of key miRNAs 
were investigated via HMDD and all of them were found 
to be linked to either lung neoplasms or NSCLC, 
including LUAD for six of them. Moreover, two of the key 
miRNAs, miR-200c and miR-21, were previously 
reported among the significantly expressed miRNAs in 
stage I LUAD patients and survival analysis indicated that 
miR-21 was significantly associated with the prognosis 
of LUAD (Robles et al., 2016). A total of 34 TFs were 
identified as key regulatory TFs. Top five of the key TFs 
were also presented in Table 1. The gene products of 25 
key TFs were previously determined as prognostic 
markers of various cancers with Fosl1 being a prognostic 
marker of lung cancer. Moreover, defects in IRF1 was 
associated with lung cancer. TRN of LUAD was 
constructed by isolating the interactions between key 
regulatory elements and common DEGs from human 
TRN. The disease-specific TRN contained 680 
interactions between 43 key regulatory elements (34 
TFs and nine miRNAs) and 306 common DEGs. 
 
Determination of potential biomarkers 

Disease-specific PPI network and TRN were used to 
identify potential biomarkers of LUAD. Genes that 
encode hub proteins were regarded as potential 
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    Table 1. Key regulatory elements in LUAD 
Key miRNA Feature 

miR-103a-3p Afflicted with lung neoplasms 
miR-135a-5p Afflicted with lung neoplasms, LUAD 
miR-200c-3p Afflicted with lung neoplasms, lung fibrosis, NSCLC 

miR-203a-3p Afflicted with lung neoplasms, NSCLC, LUAD 

miR-204-5p Afflicted with NSCLC, LUAD 

miR-21 Afflicted with lung neoplasms, NSCLC, SCC 
miR-223 Afflicted with lung neoplasms, NSCLC, LUAD 
miR-25-3p Afflicted with lung neoplasms, NSCLC, LUAD 

miR-29a-3p Afflicted with lung neoplasms, lung fibrosis, NSCLC, LUAD 

Key TFs Prognostic marker 

AR (Androgen receptor) renal cancer (favorable) and liver cancer (favorable) 
RELA (RELA proto-oncogene, NF-kB subunit) renal cancer (unfavorable) and liver cancer (unfavorable)  

SP1 (Sp1 transcription factor) pancreatic cancer (unfavorable) 

ESR1 (Estrogen receptor 1) endometrial cancer (favorable) 
YBX1 (Y-box binding protein 1) renal cancer (unfavorable) and liver cancer (unfavorable) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 
 
 
 
 
 
 
    
 
 Table 2. Summary of identified biomarker genes 

Gene Prognostic marker 

AURKA (Aurora Kinase A)  
renal cancer (unfavorable), endometrial cancer (unfavorable), liver cancer 
(unfavorable) and pancreatic cancer (unfavorable) 

CAV1 (Caveolin 1) lung cancer (unfavorable) and renal cancer (unfavorable) 
CLU (Clusterin) thyroid cancer (favorable) 

ENO1 (Enolase 1) liver cancer (unfavorable) and glioma (unfavorable) 
FHL1 (Four and a half LIM domains 1) urothelial cancer (unfavorable) 

FHL2 (Four and a half LIM domains 2) renal cancer (unfavorable) and head and neck cancer (unfavorable) 
LMO2 (LIM domain only 2) liver cancer (favorable) 

MYH11 (Myosin heavy chain 11) liver cancer (favorable) 

NME1 (NME/NM23 nucleoside diphosphate kinase 1) renal cancer (unfavorable) and liver cancer (unfavorable) 

SFN (Stratifin) 
renal cancer (unfavorable), liver cancer (unfavorable), endometrial cancer 
(favorable) and pancreatic cancer (unfavorable) 

biomarkers only if they were members of LUAD specific 
TRN. AURKA, CAV1, CLU, ENO1, FHL1, FHL2, LMO2, 
MYH11, NME1 and SFN were discovered as biomarkers 
and their functions, disease involvements and 
prognostic capabilities in cancer were presented in 
Table 2.  

Biomarker genes were also analyzed for enriched 
GO biological processes. Cell cycle, DNA damage 
checkpoint, DNA integrity checkpoint, cell death, 
apoptotic signaling pathway, cell proliferation, lipid 
metabolic process, response to lipid, reactive oxygen 
species biosynthetic process, cardiocyte differentiation, 
circulatory system development, heart development, 
and muscle contraction were found among the 
significantly enriched GO biological processes.  

Candidate biomarker genes were also assessed by 
using two independent datasets, GSE63459 and 
GSE75037 containing samples from LUAD tissues and 
their non-tumoral adjacent lung tissues. All biomarker 
genes were significantly expressed in GSE63459 and the 
expressions of all biomarker genes, except ENO1 were 
found to be significantly altered in GSE75037. The 
capabilities of biomarker genes to discriminate LUAD 
and non-tumoral lung tissues were assessed by PCA. PCA 
was carried out based on the expression profiles of 
biomarker genes in GSE63459 and GSE7503, and the 
first three principal components describing at least 74% 
of the total variance were considered. The biomarker 
genes as a group showed high potential in discriminating 
LUAD tissues from non-tumoral adjacent lung tissues 
(Figure 5). 

 
Figure 5. PCA was applied using the gene expression profiles 
of biomarker genes and the first three principal components 
could separate LUAD tissues from non-tumoral adjacent lung 
tissues in GSE63459 and GSE75037. Samples from LUAD 
tissues, and non-tumoral adjacent lung tissues were presented 
in yellow and blue colors, respectively. Ellipses indicate 95% 
confidence interval.  

 
Survival analysis of potential biomarkers 

The prognostic performances of potential 
biomarkers were determined via Cox proportional 
hazards regression analysis performed in SurvExpress. 
Patients were classified as high- and low-risk groups 
according to prognostic index estimated via expression 
levels of biomarker genes. Box-plots and Kaplan-Meier 
plots were used to visualize gene expression levels of 
risk groups and survival probabilities, respectively 
(Figure 6). The difference in gene expression between 
risk groups were compared using t-test and the 
biomarker genes were found to have significantly 
different (P-value < 0.05) expression levels in high- and 
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low-risk groups (Figure 6a). Moreover, analysis indicated 
the significant prognostic performance of biomarker 
genes as a group (Hazard ratio = 1.72 and log-rank P = 
0.0005) (Figure 6b). Biomarker genes showed high 
performance in classifying the patients with long and 
short survival and approximately 1.72-fold difference in 
death rate between these groups was observed. 

 

 
Figure 6. Survival analysis of potential biomarker genes. a) 
Box-plot showing the range and distribution of the gene 
expression levels of biomarker genes in high- and low-risk 
groups and P-values representing the differences in biomarker 
genes’ expression levels between high- and low-risk groups. b) 
Kaplan-Meier plot of biomarker genes. Hazard Ratio (HR) was 
given with a 95% confidence interval. Red and green curves 
denote high- and low-risk groups, respectively. 

 
Discussion 

 
Lung cancer is the leading cause of cancer 

associated deaths worldwide (Yan et al., 2019). Due to 
the high mortality rate, the identification of predictive 
biomarkers with high prognosis is still an issue. This 
study developed a computational framework to 
discover biomarkers for LUAD that is the most common 
type of lung cancer. The gene expression profiles 
obtained from healthy and tumoral lung tissues were 
comparatively analyzed to identify DEGs. 
Transcriptomics data derived from three independent 
studies was used to catch diverse processes, pathways, 
and key molecules that cannot be observed by a single 
dataset and to reduce the errors associated with a single 
dataset. Transcriptome, interactome and regulome 
were used simultaneously for the construction of 
disease-specific networks, i.e., PPI network and TRN. 
The integrative analysis of disease-specific networks 

yielded AURKA, CAV1, CLU, ENO1, FHL1, FHL2, LMO2, 
MYH11, NME1 and SFN as potential biomarkers that 
could be used in the diagnosis and/or prognosis of LUAD 
and survival analysis revealed their significant 
prognostic performances.  

The analysis of gene expression datasets used in 
this study revealed 432 common DEGs whose 
expression patterns were predominantly down-
regulated (81%). Functional enrichment analysis of 
common DEGs revealed three major mechanisms that 
accompany LUAD: changes in cell adhesion properties, 
possibility of bone metastasis, and pulmonary vascular 
remodeling. i) Enrichment analysis indicated cell 
adhesion, ECM organization and collagen associated 
processes among the affected processes. Collagen is the 
most abundant component of ECM, and the 
modifications in the content and the distribution of 
collagen due to tumor microenvironment lead to 
structural changes in ECM during the development of 
cancer (Lai Xu et al., 2017; S. Xu et al., 2019). Therefore, 
the induction and repression observed in ECM 
organization and collagen metabolism were in 
accordance with the loss of adhesion properties of 
tumor cells. ii) Bone is one of the most common sites of 
metastasis and bone metastasis occurs in 30-40% of the 
advanced lung cancer patients (Macedo et al., 2017). 
Genes functioning in bone associated processes, such as 
ossification, fibroblast growth factor, bone remodeling 
and mineralization were found to be significantly 
expressed, which might indicate the possible occurrence 
of bone metastasis in LUAD patients. iii) Significant 
repression of genes involved in cardiovascular system 
related processes that might be due to pulmonary 
vascular remodeling was observed. Pulmonary vascular 
remodeling frequently accompanies lung cancer and 
leads to the thickening of blood vessel wall. Since the 
accumulation of ECM components may cause this type 
of thickening (Jeffery & Wanstall, 2001; Pullamsetti et 
al., 2017), the repression of cardiovascular system 
associated processes together with ECM organization 
supports the possible changes in the pulmonary vascular 
structure in LUAD. 

Disease-specific networks were constructed by 
integrating common DEGs with human biological 
networks. The PPI network was constructed to unveil 
the interactions among common DEGs and 12 hub 
proteins were found to be noteworthy in LUAD specific 
PPI network. Regulatory elements targeting common 
DEGs were used for the construction of LUAD specific 
TRN and key regulatory elements, i.e., 34 TFs and nine 
miRNAs came into prominence in LUAD. Key miRNAs 
were previously reported to be associated with lung 
cancer and key TFs were served as prognostic markers 
in various cancers (Table 1). Therefore, hub genes 
regulated by key regulatory elements were assessed as 
candidate biomarkers for LUAD. Since key regulatory 
elements might also hold considerable information on 
the molecular mechanisms of the disease, possible 
regulatory mechanisms were highlighted and the 
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interactions between key molecules were presented in 
Figure 7. 

When functional enrichment analysis for the 
discovered biomarkers was conducted, a significant 
relation between biomarker genes and cell cycle, DNA 
damage, lipid and cardiovascular system associated 
processes was observed. The similarity between the 
processes enriched with biomarkers and that of the 
common DEGs supported that the discovered 
biomarkers were representative of LUAD. Therefore, the 
discovered biomarkers were further investigated to 
understand their roles in tumor progression. Survival 
analysis showed that the biomarker genes as a group 
had high likelihood of being prognostic biomarkers for 
LUAD. Moreover, the diagnostic capabilities of 
biomarker genes were evaluated using two independent 
gene expression datasets and PCA indicated that they 
could effectively distinguish LUAD samples from normal 
samples.  

 
Figure 7. Key regulatory elements targeting biomarker genes. 
Ellipses, rectangles, and triangles represent biomarker genes, 
TFs, and miRNAs, respectively. 

 
All discovered biomarkers were reported as 

prognostic markers of various cancers and among them 
CAV1 was classified as a prognostic marker of lung 
cancer (Table 2). CAV1 encodes a scaffolding protein 
that is the main component of the caveolae on the 
plasma membrane. The protein links integrin subunits to 
the tyrosine kinase FYN, an initiating step in coupling 
integrins to the Ras-ERK (extracellular signal-regulated 
kinases) pathway and promoting cell cycle progression. 
CAV1 is associated with migration, invasion, and 
metastasis in cancers and it functions as a tumor 
suppressor or promoter depending on the stage of the 
tumor (Shi et al., 2020). Another metastasis suppressor 
gene, NME1, was also detected as a potential 
biomarker. NME1 was previously identified because of 
its reduced mRNA transcript levels in highly metastatic 
cells. Although its overexpression was not related to the 
primary tumor size, the metastatic formation was found 
to be significantly reduced (Marino et al., 2013). 

Aurka and Sfn have several functions during 
mitosis. AURKA encodes a cell cycle regulated kinase 

that is involved in microtubule formation and/or 
stabilization at the spindle pole during chromosome 
segregation. It is involved in tumorigenesis through 
multiple mechanisms and interactions with various 
proteins functioning as tumor suppressors and 
oncogenes (Tang et al., 2017), and it has also been linked 
to poor differentiation of lung cancer (Lo Iacono et al., 
2011). SFN encodes a cell cycle checkpoint protein that 
regulates mitotic translation and plays a role in 
preventing DNA errors during mitosis in response to 
DNA damage. The suppression of SFN expression 
resulted in a reduction in cell proliferation in LUAD cell 
line (Shiba-Ishii et al., 2015).  

LMO2 encodes a highly conserved cysteine-rich, 
two LIM-domain protein that has a central and crucial 
role in hematopoietic development. All human LIM-
domain proteins (Lmo1-4) are associated with 
progression of various cancers. Although LMO2 is 
specifically linked to T cell leukaemia, its interacting 
partner GAMA2 was involved in the regulation of tumor 
development in RAS-mutant NSCLC (Matthews et al., 
2013). Fhl1 and Fhl2 are also members of the four and a 
half LIM only protein family. The involvement of FHL1 
and FHL2 in cancer development is due to their 
interactions with cancer-related proteins Smad2-4, 
which results in enhanced expressions of growth 
inhibiting genes and a decreased expression of a growth 
promoting gene c-myc (Ding et al., 2009). Previous 
reports also indicated a significant association between 
the expression of FHL2 and the cellular level of p53, 
which is an important tumor suppressor protein (Cao et 
al., 2015). The communication among the genes 
encoding these LIM-domain proteins were regulated by 
E2F4 that is a common regulator of LMO2 and FHL1 
together with AR that is a common regulator of FHL1 
and FHL2 in LUAD specific TRN (Figure 7). Since these 
biomarker genes and their common regulators might 
play a notable role in LUAD, we suggested them as novel 
molecular targets in LUAD. Another hub gene, ENO1 
encodes an alpha-enolase and is also involved in growth 
control and hypoxia tolerance. ENO1 also modulates c-
myc expression and inhibits tumor growth (Zhang L. et 
al., 2018). The expression of ENO1 was reported to be 
significantly higher in lung cancer tissues when 
compared to benign lung disease tissues, however, its 
expression was not significantly altered to differentiate 
the subtypes of lung cancer (Zhang L. et al., 2018). 

CLU encodes a secreted chaperone that prevents 
aggregation of non-native proteins and is involved in 
several basic biological events such as cell death and 
tumor progression. Intracellular clusterin also regulates 
the expression of some genes involved in DNA repair. It 
was previously associated with lung diseases, including 
asthma and idiopathic pulmonary fibrosis (Habiel et al., 
2017). Moreover, its overexpression was observed in a 
rat model of pulmonary arterial hypertension and 
contributed to pulmonary vascular remodeling (Liu et 
al., 2015). 
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MYH11 encodes a smooth muscle myosin that 
functions as a major contractile protein, converting 
chemical energy into mechanical energy through the 
hydrolysis of ATP. Myosins have several roles in 
processes related to tumor invasion, such as cell 
adhesion and migration. MYH11 was previously 
reported to be involved in the contraction of airway 
smooth muscle in asthma. Moreover, the dysregulation 
of MYH11 expression was observed in various cancers 
with a significant decrease in lung cancer (Nie et al., 
2020). 

 

Conclusion 
 
There is an ever-growing interest in the 

identification of diagnostic and prognostic biomarkers 
and therapeutic targets for lung cancer. Within the 
framework of this study, the major molecular 
mechanisms underlying LUAD were determined via 
comparative transcriptome profiling, and a 
computational framework was developed to identify 
potential biomarkers for LUAD. Disease-specific PPI 
network and TRN were constructed and integrative 
analysis of these networks with transcriptome data 
elicited potential biomarkers. The identified biomarkers 
in this study did not only represent common DEGs 
functionally, but also showed significant prognostic 
performance as a group. Possible regulatory 
communications that might have vital roles in LUAD 
were also highlighted. Since the identified biomolecules 
could be valuable for diagnosis and targeted therapies, 
they deserve clinical investigation. Further 
experimentation needs to be carried out to verify 
biomarkers’ diagnostic capabilities and to pinpoint their 
roles in LUAD progression. 
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