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Abstract 
 
Caulerpa racemosa harbors a rich reservoir of bioactive peptides derived from 

RuBisCO, a photosynthetic enzyme with promising therapeutic potential. This study 

aimed to systematically identify and characterize bioactive peptides from C. racemosa 

RuBisCO using a multi-step in silico pipeline. Simulated proteolysis using 33 enzymes 

predicted peptides with 35 different biological activities using BIOPEP-UWM. In 

addition to traditional database screening, further computational filtering was 
conducted using physicochemical profiling (ExPASy ProtParam), bioactivity prediction 

(PeptideRanker), toxicity and allergenicity evaluation (ToxinPred, AllergenFP), and 

structure-based molecular docking against relevant therapeutic targets—angiotensin-

I converting enzyme (ACE, PDB: 1O8A) and xanthine oxidase (XO, PDB: 3NRZ). Four 

peptides with high predicted bioactivity scores (>0.75) showed strong binding affinity 
(−169.00 to −252.29 kcal/mol) and favorable confidence scores, suggesting their 

possible use as dual-action therapeutic agents—with both antihypertensive and 

antioxidant effects. This integrative in silico approach demonstrates the therapeutic 

relevance of C. racemosa peptides and provides a framework for peptide prioritization 

prior to experimental validation. 

 

Introduction 
 

Bioactive peptides, released during proteolysis or 
fermentation, are protein fragments with numerous 
nutrients and health-promoting properties. Seaweed 

bioactive peptides have gained attention due to their 
diverse functional properties and potential health 
benefits. Researchers are exploring these peptide 

compounds, particularly from seaweed sources, to 
develop novel functional ingredients and therapeutic 
agents for dermatology, nutrition, and medicine (Bhat et 
al., 2015; Windarto et al., 2022; Garcia-Vaquero et al., 

2022; Windarto et al., 2024a; Windarto et al., 2024b). 
Caulerpa racemosa, also known as sea grapes, is a green 
alga with diverse biological activities, including anti-
inflammatory, antimutagenic, antinociceptive, 

anticancer, and cytotoxic effects. Its secondary 
metabolites have potential medicinal uses, but 
theirbiological activity is not yet fully explored, 

highlighting the need for further research (Ornano et al., 
2014; Windarto et al., 2023; Windarto et al., 2024c).  

The process of discovering bioactive peptides by 

traditional approaches, such as hydrolysis, purification, 
characterization, and activity assays, is both time-
consuming and resource-intensive in terms of chemicals 
and labor, resulting in high costs (Cermeño et al., 2020). 

In silico approaches utilize computational models 
and simulations to predict the efficacy and toxicity of 
compounds, thereby reducing the need for expensive 

and time-consuming animal and human trials. In silico 
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methods can facilitate faster drug development without 
the need for chemical synthesis, as well as help identify 

compounds with potential toxicity, carcinogenicity, and 
mutagenic capacity, thereby ensuring that only safe 
andeffective compounds can advance in the 

development process (Zloh & Kirton, 2018; Roney & 
Aluwi, 2024). The BIOPEP-UWM database contains a 
comprehensive list of bioactive peptides and their 
activities. The database includes over 350 articles and 

thousands of bioactive peptides with dozens of distinct 
activities (Minkiewicz et al., 2019). The precursor 
protein can undergo in silico digestion by various 

proteolytic enzymes utilizing the ENZYME(S) ACTION 
tool of BIOPEP-UWM™. The resulting theoretical 
peptides are subsequently examined to determine if 
they correspond to any known bioactive peptides in the 

database. Furthermore, software applications such as 
PeptideRanker can predict the probability of a peptide 
being bioactive. Therefore, in silico approaches employ 
an empirical approach to determine the sources of 

precursor proteins for bioactive peptides. 
Ribulose-1,5-bisphosphate carboxylase/oxygenase 

(RuBisCO) is the primary enzyme responsible for the 

assimilation of CO2 into the biosphere. It is found in all 
photoautotrophic organisms, including algae (Valegård 
et al., 2018). It is formed through protein synthesis, in 
which the genetic information encoded in DNA is 

translated into a series of amino acids. Amino acids are 
then linked together via peptide bonds to form 
polypeptide chains. RuBisCO is a protein that is 
considered complete since it contains all the necessary 

amino acids required for human ingestion. Its 
biochemical composition, organoleptic and physical 
characteristics make it a nutritionally beneficial food 

additive. In addition, RuBisCO has potential bioactivity, 
including antioxidant and anti-inflammatory properties, 
which may increase its value as a food additive (Stefano 
et al., 2018; Ducrocq et al., 2020; Grácio et al., 2023). 

This study aimed to examine RuBisCO from C. 
racemosa to identify potential bioactive peptides. 
Protein sequences, biological function, and enzyme 

activity were tabulated using BIOPEP, PeptideRanker, 
and toxicity and allergenicity evaluations.  

Materials and Methods 
 
Sequences of C. racemosa RuBisCO 

The C. racemosa RuBisCO large subunit sequence, 
consisting of 475 amino acids, was obtained from the 

UniProtKB database (Accession number: A0A1I9LK66) 
for in silico analysis. This protein is not only found in C. 
racemosa, but also in other species, such as C. 

okumurae, C. cupressoides, C. serrulate, and C. 
manorensis 

Physicochemical Properties of C. racemosa RuBisCO 
ExPASy’s ProtParam 

(https://web.expasy.org/protparam/) was utilized to 

identify the physicochemical properties of C. racemosa 

protein, such as the total amino acid (AA), the 
theoretical pI, formula, negatively and positively 

charged residues, aliphatic and instability index, and the 
grand average of hydropathicity (GRAVY). 

In-silico of RuBisCO bioactive peptide 
The probability of liberating bioactive peptides for 

the chosen proteins was analyzed using the BIOPEP-
UWMTM database. The segment exhibiting the most 
significant biological activity was chosen for reporting. 
The database estimated the frequency of fragments 

with a specific activity (A) of C. racemosa proteins using 
the provided formula:  

A = a/N   (1)   

Where "a" represents the number of fragments of 
a specific activity in a protein sequence, while "N" 
represents the total number of amino acid (AA) residues 

in the protein chain. 

In silico proteolysis of RuBisCO 
The proteins of C. racemosa were examined using 

in silico proteolysis utilizing BIOPEP's enzyme-action 
tool. Each protein sequence was independently 

subjected to hydrolysis by 33 various proteases: 
chymotrypsin (A), trypsin, pepsin (pH 1.3), proteinase K, 
pancreatic elastase, prolyl oligopeptidase, glutamyl 
endopeptidase (pH 4), thermolysin, chymotrypsin C, 

plasmin, cathepsin, clostripain, chymase, papain, ficin, 
leukocyte elastase, metridin, thrombin, pancreatic 
elastase II, stem bromelain, glutamyl endopeptidase II, 

oligopeptidase B, calpain 2, glycyl endopeptidase, 
oligopeptidase F, proteinase P1, Xaa-pro dipeptidase, 
pepsin (pH > 2), coccolysin, subtilisin, chymosin, ginger 
protease, V-8 protease (pH 7.8). The value of frequency 

(AE) and relative frequency (W) of releasing peptides by 
specific protease were calculated using the formula:  

AE = d/N   (2)   

W = AE/A   (3)   

where d is the number of peptides hydrolyzing by 
specific proteases from the sequence, and N is the total 
residues of amino acid. The parameters of V and 

theoretical degree of hydrolysis (DHt) were also 
calculated using the formula: 

DHt = (d/D) × 100%  (4)  

"d" represents the sum of hydrolyzed peptides, 
while "D" represents the sum of peptide bonds in the 
sequence. 

The bioactivity score of tripeptides and tetrapeptides 

The peptide fragments from C. racemosa proteins, 
which possess established biological activity, were 
manually enumerated. BIOPEP-UWMTM displays the 
fragments, including the activities available in the 

database. In this study, the sequence of tripeptide and 
tetrapeptides residues was screened and considered for 
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Figure 1. A) RuBisCO protein sequence of C. racemose and B) distributions of amino acids. 
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potential biological activity. The bioactivity score of the 
peptide fragments was measured using PeptideRanker, 
a bioinformatics tool available at 

http://distilldeep.ucd.ie/PeptideRanker. The cutoff 
inthis study was >0.75 to find the tripeptide and 
tetrapeptide fragments that may have a high probability 
of having bioactivities. 

Probability score prediction of RuBisCO C. racemosa 

The toxicity and allergenicity of bioactive peptides 
were assessed using ToxinPred and AllergenFP, as 
described by Gupta et al. (2013) and Dimitrov et al. 
(2014), respectively. ToxinPred is available at 

http://crdd.osdd.net/raghava/toxinpred/ and 
AllergenFP at http://ddg-pharmac.net/AllergenFP/. 

Molecular docking simulation 
Peptides derived from C. racemosa RuBisCo were 

screened based on predicted bioactivity scores, and the 

top four peptides with scores >0.75 were selected for 
molecular docking. Their 3D structures were 
constructed and energy-minimized using Avogadro 

software with the MMFF94 force field (Hanwell et al., 

2012). Docking was performed using the HDOCK server 

(Yan et al., 2020) against two target proteins: 
angiotensin-converting enzyme (ACE, PDB ID: 1O8A) for 
antihypertensive activity (Natesh et al., 2003), and 

xanthine oxidase (XO, PDB ID: 3NRZ) for antioxidant 
activity (Okamoto et al., 2004). Protein structures were 
preprocessed by removing water molecules and 
heteroatoms. Docking results were ranked based on 

binding energy (kcal/mol), confidence score, and ligand 
RMSD, and the best-scoring poses were analyzed to 
evaluate interaction potential. 

Results and Discussion 
 

Various bioinformatics software, tools, and 
databases were used to perform in silico proteolysis and 

release different bioactive peptides from the RuBisCO 
sequences of C. racemosa proteins. The UniProtKB 
database was used to query the sequences of RuBisCO 
of C. racemosa. The sequence obtained has similarities 

(100%) to the RuBisCO sequence in other species, C. 
okumurae, C. cupressoides, C. serrulata, and C. 
manorensis. RuBisCO (ribulose-1,5-bisphosphate  

carboxylase/oxygenase) is considered the most 
abundant protein on Earth, found in all green leaves, 
and responsible for photosynthesis. The composition of 

this substance is widely regarded as very suitable for 
human consumption because of its exceptional 
nutritional content and ability to be used in a wide range 
of food applications (Grácio et al., 2023; Nawaz et al., 

2024). The sequence of the RuBisCO large subunit from 
C. racemosa was obtained from UniProtKB, and the 
distribution of its amino acids is shown in Figure 1. 

Figure 2 shows the physicochemical properties of 
RuBisCO from C. racemosa. The total number of 
peptides is 475, with a molecular weight of 52515.82 Da, 

and the theoretical isoelectric point (pI) is 6.19. The 
number of negatively charged residues (Asp + Glu) are 
59, and the positively charged residues (Arg + Lys) are 
53. Furthermore, the instability index of 35.18 indicates 

that the protein sequences exhibit stability. These 
sequences will undergo further evaluation in wet-lab 
studies to assess their stability. Because RuBisCO 

sequences have a high aliphatic index (81.18), they are 
classified as thermostable proteins, meaning all 
sequences resist degradation at high temperatures. The 
GRAVY rating (-0.227) indicates that the proteins have a 

hydrophobic nature and are positively graded. The 
importance of these parameters lies in their ability to 
provide a comprehensive understanding of a peptide's 

physical and chemical properties. This information is 
essential for designing and optimizing peptides for  
specific applications, such as medicine, nutrition, and 
biotechnology (Kaur et al., 2020; Roshanak et al., 2023). 

The sequences were analyzed using the BIOPEP 
database to assess the potential of RuBisCO protein 
sequences from C. racemosa as precursors for bioactive 
peptides. The results of the in-silico approach of the 

bioactive peptides from RuBisCO and its activities can be 
seen in Figure 3. Most of the bioactive peptides in 
RuBisCO from C. racemosa play a role as DPP-IV 

inhibitor, ACE inhibitor, antioxidant, and DPP-III 
inhibitor. This result aligns with the hydrophobic nature 
of the peptide RuBisCO in C. racemosa. RuBisCO is a 
valuable source of bioactive peptides that possess 

qualities similar to opioids, enhance memory, fight 
cancer, reduce inflammation, stimulate appetite, 

A 
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Figure 2. RuBisCO protein structure and its physicochemical properties. 

 

 

 

 

 

 

 

Figure 3. Total number of RuBisCO from C. racemosa as bioactive peptides. Numbers in brackets indicate the frequency of bioactive 
peptide activity. RuBisCO: Ribulose bisphosphate Carboxylase-Oxygenase; ACE: Angiotensin Converting Enzyme; PAM: Protein 
associated with Myc; CaMPDE: Calmodulin-dependent phosphodiesteras.

provide antioxidant effects, and lower blood pressure 
(Stefano et al., 2018; Kose, 2021). 

Table 1 illustrates the biological activities of the 
active fragments. Based on Table 1, the RuBisCO 

sequence has the most biological activity as an ACE 
inhibitor, DPP-IV inhibitor, antioxidant, and DPP-III 
inhibitor. Several studies have shown that RuBisCO has 
activity as an ACE inhibitor, antioxidant, and dipeptidyl 

peptidase inhibitor IV and III (Udenigwe et al., 2017; 
Stefano et al., 2018; Ito et al., 2021). 

In silico proteolysis was employed to analyze the 
proteins of RuBisCO from C. racemosa using BIOPEP's 
enzyme-action instrument. The 33 distinct enzymes 
independently subjected the RuBisCO sequence to 

hydrolysis. Proteases can break down proteins into 
peptides and work specifically by recognizing and 
cleaving specific peptide bonds. This specificity is due to 
the unique structure and function of the protease 

enzyme. Various proteases are known to exhibit 
specificity in their substrate recognition and cleavage. 
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Table 1. Biological activities of the active fragments 

Enzyme ACE-i AP-i αg-i 
Anti-
a 

Anti
-c 

Anti-o 
Ant
i-t 

CaMPDE-i DP3-i DP4-i GC2-i 
Hypol
ipid 

TP2
-i 

Lac
t-i 

Nepr
-i 

PAM
-i 

Reg Ren-i Stim TubTL-i XP-i 

Chymotrypsin 

(A) 

RL, VF, VW, VAY, 

AY, PL, RW, GF, 
GM, GL, GH, KY, 
IAY, DY, DF, EF, 

DL 

GF VW     
AY, PW, 
RW, TY, 
VW, IAY 

  EF 
RW, 

GF, IH 

SL, GL, PL, AY, GF, GH, IH, 
KY, PW, QF, QY, RL, RM, 
RW, TY, VF, VN, VW 

DF EF 
VF, 

GF 
PL     

DY, 

SL 
EF, QF   AY PL 

Trypsin GR, QK, YK, DR       YK       YK WR, DR, PK, YK                       

Pepsin  
(pH 1.3) 

RL, GF, GL, DF, 
EF, DL 

GF           EF GF GL, GF, QF, RL DF EF GF         EF, QF       

Proteinase K 

RL, AY, GP, RW, 

GF, GM, GL, GV, 
SY, KF, KL, KP, EI, 

DY, TP, DF, QGP, 
QP, EF, DL 

GF   GP   
AY, EL, 
RW, KP 

GP KF, EF 

RW, 

GF, 
RV, 
HF 

GP, TP, SP, KP, QP, AL, SL, 

GL, AY, EI, GF, GV, HF, HI, 
HV, KF, KV, QF, QV, RI, RL, 
RM, RW, SY, TL, TY 

DF EF GF       
DY, 
GP, 

SL 

KF, EF, 
QF 

  AY   

Pancreatic 

Elastase 

RL, HY, PL, RA, 
KG, FG, MG, HG, 

EG, EA, PG, DG, 
KL, KA, EI, RG, DL 

  EA PG   PEL PG   KA 

KA, RA, PL, WT, EG, EI, ES, 
ET, HI, HS, HV, HY, KG, KT, 

KV, MG, NA, NL, NT, NV, 
PG, PV, QA, QV, RG, RI, RL 

      PL FG PG PG FT     PL 

Prolyl 

Oligopeptidase 
MGP, QP                 QP                       

Glutamyl 
Endopeptidase 

(pH 4) 

GE               GE GE FE, GE                     

Thermolysin 

YP, IP, FR, VG, 

AG, FG, LG, YK, 
VE, LQ, LN, LR 

  

YP, 

VE, 
LR 

  YK LH     

LR, 
YK, 
YR, 

IH, FR 

APG, IP, YP, AE, AG, AT, 

FR, IH, IQ, LH, LN, LT, VD, 
VE, VG, VS, VT, YD, YK, YR 

AE, FE       FG     FT, LR       

Chymotrypsin 
C 

RL, VW, VAY, AY, 
GP, RW, AP, GM, 

GL, GE, SY, KY, KL, 
VE, KE, IAY, DY, 
TP, DL 

  
VW
, VE 

GP   

AY, RW, 

TY, VW, 
IAY 

GP   
RW, 
GE 

GP, AP, TP, SP, AL, SL, GL, 

AE, AY, GE, KE, KY, RL, RW, 
SY, TY, VE, VN, VW 

AE, 
GE, FE 

          

DY, 

GP, 
SL 

    AY   

Plasmin GR, DR, QK, YK       YK       YK WR, DR, PK, YK                       

Cathepsin 

RL, VAY, AY, PL, 
GF, GM, GL, GH, 
IAY, DY, DF, EF, 

DL 

GF       
AY, TY, 
IAY 

  EF GF, IH 
GL, PL, AY, GF, GH, IH, QF, 
RL, RM, TY 

DF EF GF PL     DY EF, QF   AY PL 

Clostripain DR                 WR, DR                       

Chymase 
RL, VAY, AY, PL, 
GF, GL, MRW, 

IAY, DF, EF, DL 

GF       
AY, TY, 
IAY 

  EF GF GL, PL, AY, GF, QF, RL, TY DF EF GF PL       EF, QF   AY PL 

Papain 

AF, AG, MG, QG, 
SG, EG, PG, DG, 
KL, YK, AR, AV, 

DF, EF, ER, DR, DL 

    PG YK YYT, PEL PG   
MR, 
YK 

APG, AL, SL, WR, WT, AE, 
AG, AT, AV, DR, EG, ET, 
MG, MR, NL, PG, QF, QG, 

VL, YK 

AE, 

DD, 
DF 

EF AF     PG 
PG, 
SL 

EF, QF VL     

Ficin 

VY, VAY, AY, PL, 
VK, VG, AG, MG, 

QG, TG, EG, PG, 
QK, NY, NK, TF, 

IAY, DY, DF, EF, 
ER, DR, DL 

  WS PG   

AY, EL, 
PWG, 
PEL, TY, 

VY, IAY, 
PG 

  EF 
MR, 
TF, 

IH, VY 

AL, PL, WR, WS, AG, AY, 
DR, EG, IH, MG, MH, MR, 
NY, PG, PK, QF, QG, TF, 

TG, TK, TL, TS, TY, VG, VK, 
VL, VY 

DF EF VY PL   PG 
DY, 
PG 

EF, QF, 
TF 

VL AY PL 
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Leukocyte 
Elastase 

RL, RA, GA, GL, 
GV, GT, EA, KA, 

EI, DGL, YV, DL 

  
YPL
, EA 

    YYT, PEL     KA 

KA, GA, RA, GL, WT, EI, ES, 

ET, GV, HI, HS, HV, KT, KV, 
NA, NL, NT, PV, QA, QV, 
RI, RL, YV 

              FT       

Metridin 

RL, VAY, AY, PL, 

GF, GL, MRW, 
IAY, DF, EF, DL 

GF       
AY, TY, 

IAY 
  EF GF GL, PL, AY, GF, QF, RL, TY DF EF GF PL       EF, QF   AY PL 

Thrombin                                           

Pancreatic 

Elastase II 

RL, GF, GM, GL, 

DF, EF, DL 
GF           EF GF HF, GL, GF, HF, QF, RL, RM DF EF GF         EF, QF       

Stem 

Bromelain 

IA, DA, MG, QG, 
EG, EA, PG, DG, 

KL, KA, EV, DF, 
YV, EF, ER, DR, DL 

  
YPL

, EA 
PG   

YYT, 

PEL, YF 
PG EF 

MR, 
YF, 

DA, 
KA 

KA, IA, WR, WT, DR, EG, 
ES, ET, EV, HS, KT, KV, MG, 

MR, NA, NL, NR, NT, NV, 
PG, QA, QF, QG, YF, YV 

DA, 

DF 
EF       PG PG 

EF, NR, 

QF 
IV     

Glutamyl 
Endopeptidase 

II 

                                          

Oligopeptidase 
B 

GR, QK, YK, DR       YK       
YK, 
FL, YI 

WR, DR, PK, YK                       

Calpain 2 

IPP, YG, VK, VG, 

AG, FG, MG, SG, 
EG, PG, DG, YK, 

NK, AR, PQ, AV, 
FQ, ST, ER, DR, DL 

  IPP PG YK   PG   
YK, 

FL, YI 

APG, FL, AL, SL, WR, WT, 

AE, AG, AT, AV, DN, DR, 
EG, ET, FQ, IQ, MG, NL, 

NQ, PG, PK, PQ, VG, VK, 
VL, YG, YI, YK 

AE, 

DD 
      FG PG 

PG, 

SL 
FT VL YG   

Glycyl 
Endopeptidase 

AG, MG                 AG, MG                       

Oligopeptidase 

F 

RL, GF, GL, DF, 

EF, DL 
GF           EF GF GL, GF, QF, RL DF EF GF         EF, QF       

Proteinase P1 
AY, RA, GM, GH, 
GV, MG, GK 

        AY       
RA, AY, GH, GV, MG, RI, 
SV, TN 

              FT IV AY   

Xaa-Pro 

Dipeptidase 
MG                 MG                       

Pepsin 
(pH > 2) 

RL, RY, VF, RF, VY, 

HY, PL, VK, IA, IP, 
RA, IF, VG, HL, 

SG, PG, IE, VE, 
PQ, IL, RG, VM 

  VE PG   
HL, VY, 
RY 

PG   

RF, 
HL, 

HF, 
IH, 
PF, 

VY 

VA, PA, HA, IP, IA, RA, HL, 
SL, PL, WT, HD, HF, HY, IH, 

IL, IM, IQ, PF, PG, PK, PQ, 
RG, RL, RM, RN, VD, VE, 
VF, VG, VK, VL, VM, VN, 

VT, VY 

IE   
VA, 
VF, 

VY 

PL VF PG 
PG, 
SL 

  VL   PL 

Coccolysin 
YP, AG, FG, LG, 
YK, LVE, LQ, LN, 

AV, YV, LR 

  
YP, 
LR 

  YK LH     
LR, 
YK, 

YR 

APG, YP, AE, AG, AT, AV, 
IQ, LH, LN, LT, YD, YK, YR, 

YV 

AE, FE       FG     FT, LR       

Subtilisin 

RL, VF, VW, VY, 
VAY, AY, PL, GF, 
GL, GT, EA, MRW, 

IAY, DF, RG, EF, 
DL 

  
VW
, EA 

    
AY, PEL, 
TY, VY, 

VW, IAY 

  EF 
GF, 
VY 

GL, PL, AY, GF, HS, QF, RG, 
RL, TS, TT, TY, VF, VL, VS, 

VW, VY 

DF EF 
VF, 
VY, 

GF 

PL       EF, QF VL AY PL 

Chymosin                                           

Ginger 

Protease 
                                          

V-8 Protease 
(pH 7.8) 

GE         KD     GE GE, TD, TL FE, GE                     
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Figure 4. Number of active fragments for each protease. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Table 2. The degree of hydrolysis (DHt) of each enzyme on RuBisCO protein 

Enzymes DHt (%) Enzymes DHt (%) Enzymes DHt (%) 

Chymotrypsin (A) 26.5823 Clostripain 5.9072 Calpain 2 46.2025 
Trypsin 11.1814 Chymase 18.5654 Glycyl endopeptidase 9.9156 
Pepsin (pH 1.3) 13.0802 Papain 43.8819 Oligopeptidase F 13.0802 
Proteinase K 35.865 Ficin 44.7257 Proteinase P1 36.9198 
Pancreatic Elastase 53.3755 Leukocyte Elastase 39.6624 Xaa-Pro Dipeptidase 2.7426 
Prolyl Oligopeptidase 4.2194 Metridin 18.5654 Pepsin (pH > 2) 71.7300 
Glutamyl Endopeptidase (pH 4) 6.7511 Thrombin 0 Coccolysin 32.0675 
Thermolysin 38.1857 Pancreatic Elastase II 15.1899 Subtilisin 27.0042 
Chymotrypsin (C) 32.7004 Stem Bromelain 55.0633 Chymosin 0 
Plasmin 11.1814 Glutamyl Endopeptidase II 0 Ginger Protease 0 
Cathepsin 21.9409 OligopeptidaseB 11.1814 V-8 Protease (pH 7.8) 12.4473 

Based on the results, pepsin (pH >2) could release the 
most active fragments, followed by calpain 2, ficin, 
pancreatic elastase, stem bromelain, and proteinase K, 

respectively. Meanwhile, thrombin, glutamyl 
endopeptidase II, chymosin, and ginger protease could 
not release active fragments from the RuBisCO protein 

(Figure 4). Pepsin is a protease that is active at a pH 
greater than 2. Pepsin's optimal pH range is between 1.5 
and 2.5, allowing it to efficiently cleave peptide bonds in 
proteins. At this pH, the enzyme's active site is optimized 

for substrate binding and catalysis, releasing large 
amounts of peptide fragments (Mostashari et al., 2022). 
RuBisCO is primarily broken down by proteases such as 

calpain 2 and ficin, which are active at different pH 
ranges and are involved in various cellular processes. 
Thrombin, chymosin, and ginger protease cannot break 
down the RuBisCO protein because they are not 

explicitly designed to target RuBisCO. 
The degree of hydrolysis (DHt) is a critical factor 

contributing to the peptides' composition and 
functional properties. A high DHt value indicates that a 

significant percentage of peptide bonds in the protein 
have been cleaved during hydrolysis. This indicates that 

the protein has undergone hydrolysis, forming smaller  
peptides and individual amino acids. Consequently, 
there is an increased abundance of free amino acids and 

a decrease in the protein's molecular weight, which 
improves their solubility and bioavailability, and 
increases their bioactivity. The DHt of each hydrolysis 

using various enzymes can be seen in Table 2. 
Different enzymes have different specificities and 

efficiencies, which can affect the extent of peptide bond 
cleavage and the resulting degree of hydrolysis 

(Baharuddin et al., 2016; Sbroggio et al., 2016; Langyan 

et al., 2021). Table 2 showed that pepsin (pH >2) had the 

highest DHt (71.73%); meanwhile, thrombin, chymosin, 
ginger protease, and glutamyl endopeptidase II could 
not hydrolyse the RuBisCO protein. Pepsin is most active 

at pH 1.5 to 2.5, allowing it to efficiently cleave peptide 
bonds in proteins. At this specific pH level, the enzyme's 
active site is tailored to bind with the substrate and 

facilitate catalytic reactions efficiently, resulting in a 
significant amount of hydrolysis. The catalytic  
mechanism, stability, and specificity also play a role in 
pepsin's ability to produce high DHt and release active 
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Figure 5. The sum of AE of each protease for selected biological activities. AE: Frequency of release fragments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. The sum of BE of each protease for selected biological activities. BE: Activity of fragments released by proteolytic enzymes. 

 

peptide fragments. Pancreatic elastase also has a high 

DHt (53.37%) due to its specific properties and 
mechanisms of action; it is stable, it has elastin, which 
increases the DHt, has a pH optimum between 7.5-8.5 

which is close to the gastrointestinal tract pH 
(Graszkiewicz et al., 2010; Capurso et al., 2019). 
Thrombin and glutamyl endopeptidase II cannot 
hydrolyze proteins because they are precise for their 

respective substrates. Thrombin can only hydrolyze 
fibrinogen, and glutamyl endopeptidase II can only 
hydrolyze glutamyl bonds. They cannot recognize and 
bind to other proteins, preventing them from 

hydrolysing them (Andreatta et al., 1971; Stennicke & 
Breddam, 2012). 

The AE, W, V, and BE parameters are crucial in 

understanding the efficiency of bioactive peptides. 
These parameters are derived from the peptide 
sequence and provide valuable insights into the 
structural and functional properties of the peptide. In 

this study, we selected the six most potential biological 

activities based on the results obtained: ACE inhibitor, 

alpha-glucosidase inhibitor, antioxidant, renin inhibitor, 
dipeptidyl peptidase III and IV inhibitor. The sum of A E, 
BE, W, and V values for each protease in each biological 

activity are presented in Figure 5-6-7-8. 
The peptides were further evaluated and ranked 

based on their bioactivity ratings to identify novel 
bioactive peptides with specific effects. The 

PeptideRanker is a server that employs predictive 
algorithms to determine the likelihood of a particular 
peptide sequence being bioactive, thereby estimating 
the likelihood of discovering new bioactive peptides. 

The cutoff value for this investigation was established at  
greater than 0.75. A peptide that exceeds the 
PeptideRanker threshold (0.5) is classified as bioactive 

(Coscueta et al., 2022). Consequently, due to their 
prospective bioactivity, novel tripeptides and 
tetrapeptides with a bioactivity score greater than 0.75 
were selected for analysis. Table 3 displays the predicted 

bioactive peptide and the allergenicity. 
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Figure 7. The sum of W of each protease for selected biological activities. W: Relative frequency of release fragments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The sum of V of each protease for selected biological activities. V: Relative activity of fragments released by proteolytic  
enzymes. 

 

Tripeptide and tetrapeptide are more stable than 
longer peptides, which can be broken down by digestive 

enzymes, making them more likely to survive 
gastrointestinal digestion and reach the bloodstream;  
they can be designed to target specific biological 
pathways or receptors, allowing for more precise and 

effective bioactivity; more cost-effective option for 
bioactive peptide development and ease to synthesis 
(Daliri et al., 2017; Du & Li, 2022). Based on the results, 
some peptides are probable allergens with Tanimoto 

scores between 0.5-0.8. The information on the 
allergenicity of a peptide is crucial for ensuring the 
safety and efficacy of peptide-based treatments. The 

Tanimoto score is an essential tool in identifying the 
allergenicity of a peptide by predicting the potential for 
cross-reactivity between different allergens. The 
Tanimoto score ranges from 0 to 1, where 1 indicates 

identical sequences, and 0 indicates no similarity. The 
Tanimoto score can help identify these similarities and 
predict the potential for cross-reactivity (Karlsson et al., 

2016; Shao et al., 2021). In this study, we identified a 
bioactive peptide derived from RuBisCo C. racemosa , 

which exhibited a high bioactivity prediction score 
(>0.75), indicating strong potential for biological activity. 
Interestingly, this same peptide sequence was also 
detected in other species, suggesting its conserved 

nature and potential functional importance across 
different taxa that summarized in Table 4. Short-chain 
bioactive peptides such as RDRF, AYF, RCY, IPP, PFMR, 
and YPL exhibit a range of biological activities due to 

their specific amino acid composition, sequence, and 
structural characteristics. These peptides often contain 
hydrophobic (e.g., Phe, Ile, Leu, Tyr) and positively 

charged residues (e.g., Arg, Lys), which enhance their 
interaction with target enzymes or reactive species. For 
example, IPP (Ile-Pro-Pro) is a well-characterized 
tripeptide with proven ACE-inhibitory and 

antihypertensive effects, attributed to its proline-rich 
sequence and ability to bind the ACE active site  
(Nakamura et al., 1995; Seppo et al., 2003). Similarly, 
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Table 3. The PeptideRanker of the bioactive peptide by various proteases (> 0.75) and its allergenicity 
Enzyme Peptide Score Allerg TS Enzyme Peptide Score Allerg TS Enzyme Peptide Score Allerg TS 

Chym
ot

rypsin 
(A

) 

  AAF 0.833 NON 0.83 Papain
 

  AYF 0.915 NON 0.84 Calpain 2
 

  AFR 0.91 NON 0.83 
RDRF 0.826 NON 0.83 HPWG 0.951 YES 0.83 HPWG 0.951 YES 0.83 
SQPF 0.879 YES 0.83 MHF 0.963 NON 0.84 IPP 0.766 YES 0.82 
TGGF 0.844 NON 0.84 PPHG 0.796 YES 0.83 MHFR 0.902 YES 0.82 

Trypsin         QPF 0.954 NON 0.85 PFMR 0.974 YES 0.81 

Pepsin (pH
 

1.3) 
  AAF 0.833 NON 0.83 Ficin

 

  AAF 0.833 NON 0.83 PPHG 0.796 YES 0.83 

AYF 
0.915

3 NON 0.84 MPAL 0.801 NON 0.81 

G
lycyl 

Endope
ptidase

 

  

HPWG 0.951 YES 0.83 

TGGF 

0.844

1 NON 0.84 PPH 0.765 YES 0.83 PPHG 0.796 YES 0.83 

Proteinase
 K

 

  

AAF 0.833 NON 0.83 PWG 0.985 NON 0.83 
O

ligope

ptidase
 

F   

AAF 

0.833

3 NON 0.83 
GAGF 0.934 NON 0.82 QPF 0.954 NON 0.85 AYF 0.915 NON 0.84 

HGM 0.78 NON 0.84 Leukocyte 

Elastase
 

  FRMT 0.84 NON 0.83 TGGF 0.844 NON 0.84 

RDRF 0.826 NON 0.83 GFV 0.825 NON 0.82 Prot

einas
e P1 

  GFV 0.825 NON 0.82 
TGGF 0.844 NON 0.84 GGFT 0.853 YES 0.84 WGNA 0.771 YES 0.82 

Pancreatic Elastase
 

  FQG 0.88 NON 0.84 GMPI 0.845 NON 0.82 WHM 0.966 NON 0.82 

FRMT 0.84 NON 0.83 YPL 0.792 YES 0.82 

Xaa-Pro 
Dipepti
dase         

HPWG 0.951 YES 0.83 

M
etridin

 

  

AAF 
0.833

3 NON 0.83 

Pepsin (pH
 

> 2) 
  

HPWG 0.951 YES 0.83 
MPI 0.799 NON 0.83 GHPW 0.954 YES 0.8 PPHG 0.796 YES 0.83 
PPHG 0.796 YES 0.83 MRW 0.978 NON 0.83 RCY 0.752 NON 0.83 

QFG 0.919 NON 0.85 RDRF 0.826 NON 0.83 VWHM 0.81 NON 0.83 

RCY 0.752 NON 0.83 TGGF 0.844 NON 0.84 
Coccoly
sin LGMP 0.879 NON 0.81 

Glutamy
l 
Endopep
tidase 
(pH 4)         

Thromb
in 

        

Subtilisin
 

  

AAF 0.833 NON 0.83 

Thermol

ysin LGMP 0.879 NON 0.81 

Pancreatic 

Elastase
 II 

  

AAF 

0.833

3 NON 0.83 GHPW 0.954 YES 0.8 
Chymotr

ypsin C         AYF 0.915 NON 0.84 GMPI 0.845 NON 0.82 

Plasmin         TGGF 0.844 NON 0.84 MRW 0.978 NON 0.83 
Cathepsi

n 
  

AAF 0.833 NON 0.83 Stem
 B

rom
elain

 

  HPWG 0.951 YES 0.83 QPF 0.954 NON 0.83 

TGGF 0.844 NON 0.84 MHF 0.963 NON 0.84 RDRF 0.826 NON 0.85 

Clostripa
in         PPHG 0.796 YES 0.83 TGGF 0.844 NON 0.83 

Chym
ase

 

  

AAF 0.833 NON 0.83 QPF 0.954 NON 0.85 
Chymos
in         

GHPW 0.954 YES 0.8 YPL 0.792 YES 0.82 Ginger Protease       

MRW 0.978 NON 0.83 

Glutam
yl 
Endope
ptidase 

II         

V-8 
Proteas
e (pH 
7.8) 

        

RDRF 0.826 NON 0.83 

Oligope

ptidase 
B         *Allerg: Allergenicity 

TGGF 0.844 NON 0.84  
    *TS: Tanimoto Score 

 

 

 

 

Table 4. Bioactive peptides from RuBisCO and its activities 

Peptide Sequence Source Reported Bioactivity Reference 

RDRF RDRF Ulva australis Collagenase inhibitor, antibacterial Kang et al (2023) 
AYF AYFPEL Milk proteins Antihypertensive  Contreras et al. (2010) 

RCY RCY Natural compound B16 Tyrosinase inhibitors Hsiao et al. (2014) 
IPP IPP Milk casein ACE inhibitor Hirota et al. (2007); Adams et al. (2020) 
PFMR PFMR Ulva lactuca ACE inhibitor Amin et al (2021) 

YPL YPLDLF Spinach RuBisCo Opioid activity Hirata et al. (2007) 

 

RCY and AYF contain aromatic and sulfur-containing 

residues, which are known to contribute to antioxidant 
activity through free radical scavenging (Erdmann et al., 
2008). Multifunctionality is common among short 

peptides (<5 residues) because they can adopt diverse 
conformations and interact with various biological 

targets, leading to overlapping antioxidant, 

antihypertensive, anti-inflammatory, or anticancer 
effects (Udenigwe & Aluko, 2012). This versatility makes 
such peptides promising candidates for nutraceutical or 

pharmaceutical applications. 
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Figure 9. Molecular docking and score of peptides as ACE inhibitor (left) and antioxidants (right). A) MPW; B) PFMR; C) PWG; and D) 
WHM. The circle shows the binding of the peptides to the receptor. 

 

The toxicity of the RuBisCO protein from C. 
racemosa can be seen in Table 5. Most of the peptides 
found in RuBisCO protein from C. racemosa are not 

toxic; only seven fragments are predicted as toxins. The 
released active peptides from various enzymes with a 
PeptideRanker score > 0.75 are not toxins. The 
information on the toxicity of a peptide is crucial for 

ensuring the safety, efficacy, cost-effectiveness, 
regulatory compliance, and improved understanding of 
peptide-based therapeutics. Accurate toxicity prediction 
is essential for successfully developing and applying 

peptide-based treatments (Wei et al., 2022; Zhao et al., 
2022). While many previous studies on RuBisCO-derived 
peptides focus on sequence-based prediction alone 

(e.g., using BIOPEP), this study advances the field by 
integrating structural-based molecular docking, 
enabling an assessment of binding affinity and 
interaction strength with real protein targets. For 

instance, the tripeptide IPP, previously shown to lower 
blood pressure in clinical trials (Nakamura et al., 1995), 
displayed a comparable docking score in our model, 

validating the predictive approach. This reinforces the 
value of combining peptide screening with structure-
based computational validation for therapeutic peptide 
discovery. 

Table 5. The prediction of toxicity from RuBisCO protein of C. 
racemosa 

Fragments 
SVM 
Score 

Predicted 
Toxicity 

AGHCDEMIKR 0.04 Toxin 
DRYKGRCYDL 0.15 Toxin 
GDDACLQFGG 0.03 Toxin 
GHCDEMIKRA 0.09 Toxin 
HCDEMIKRAQ 0.19 Toxin 

NATAGHCDEM 0.05 Toxin 
RYKGRCYDLE 0.20 Toxin 
All the released of bioactive 
peptides (> 0.75) 

-Ve Non-Toxic 

 

This study used the top four peptides with the 
highest score (> 0.75) as the receptor for molecular 
docking. The molecular docking results revealed that the 
selected peptides exhibited strong binding affinities 

toward both ACE and xanthine oxidase (Figure 9) with 
docking scores ranging from −169.00 to −252.29 
kcal/mol and −164.59 to −221.89 kcal/mol, respectively. 
These values suggest favorable interactions, especially 

since more negative docking scores correlate with 
stronger binding (Meng et al., 2011). The confidence 
scores for both targets (up to 0.8855 for ACE and 0.8081 

for XO) further support the reliability of the predicted 
binding poses. While the ligand RMSD values were 
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relatively high, particularly for ACE (up to 82.13 Å), such  
variability is expected in flexible peptide docking and 

does not necessarily indicate poor binding (Yan et al., 
2017). These findings imply that the peptides possess 
potential dual bioactivity, acting as both ACE inhibitors 

and antioxidants, aligning with previous studies 
highlighting the multifunctionality of marine-derived 
peptides (Ngo et al., 2011). 

Conclusion 
 

This study provides a comprehensive in silico 

analysis of the bioactive potential of peptides derived 
from the RuBisCO protein in C. racemosa. By integrating 
multiple bioinformatic tools, including BIOPEP-UWM, 
PeptideRanker, ToxinPred, AllergenFP, ProtParam, and 

molecular docking simulation using HDOCK we 
identified a diverse array of peptides with predicted 
biological activities, notably ACE and DPP-IV inhibition. 
Several peptides demonstrated high activity scores and 

were predicted to be non-toxic and non-allergenic, 
indicating their promise as nutraceutical or therapeutic 
candidates. This study also provides novel insight by 

demonstrating that peptides from C. racemosa RuBisCO 
are capable of dual inhibitory effects on ACE and XO, as 
confirmed through a combination of in silico enzymatic  
digestion, bioactivity scoring, and molecular docking. 

Importantly, we emphasize that all results presented 
here are based solely on in silico predictions. While 
these computational approaches offer valuable 
preliminary insights and significantly streamline the 

discovery process, experimental validation is essential 
to confirm the actual bioactivity, safety, and efficacy of 
the identified peptides. Future work should involve in 

vitro enzymatic hydrolysis, peptide isolation, and 
functional assays to validate the predicted activities and 
assess their real-world potential. Such validation would 
not only confirm the therapeutic relevance of these 

peptides but also strengthen their applicability in 
functional food or pharmaceutical development.  
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